Visualization of toner ink adsorption at bubble surfaces

Flotation deinking involves interactions between inks particles and bubbles surfaces. These interactions are very difficult to observe directly or to quantify in bench-scale experiments or mill operations, making it difficult to evaluate effects of process conditions such as bubble size and solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tappi journal 2006-04, Vol.5, p.10-16
Hauptverfasser: Emerson, Zachery, Bonometti, Thomas, Krishnagopalan, Gopal, Duke, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flotation deinking involves interactions between inks particles and bubbles surfaces. These interactions are very difficult to observe directly or to quantify in bench-scale experiments or mill operations, making it difficult to evaluate effects of process conditions such as bubble size and solution chemistry on deinking efficiency. This paper presents images and measurements of toner ink interactions with bubble surfaces in laboratory-scale flotation processes. Stable adsorption of toner ink was observed at surfaces of stationary and suspended bubbles for several system chemistries. Interactions of toner particles and bubbles were quantified by high magnification and high temporal resolution digital videos obtained in bubble flow facilities creating both stationary and flowing bubbles. Large (>200 micron), flat toner particles adsorbed to bubble surfaces by single contact points. Smaller toner particles formed very stable complexes in fatty acid chemistries. Desorption of toner ink from bubble surfaces was not observed, even for vigorous flows. Bubbles were observed to be fully covered with toner after 4 minutes of residence time in the suspending bubble flow facility. Initial estimates indicate that bubbles with diameters of approximately 1 mm carry more than 1 mg of ink per bubble.
ISSN:0734-1415