Tropical bounds for eigenvalues of matrices
Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, whe...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2014-04, Vol.446, p.281-303 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Linear algebra and its applications |
container_volume | 446 |
creator | Akian, Marianne Gaubert, Stéphane Marchesini, Andrea |
description | Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1. |
doi_str_mv | 10.1016/j.laa.2013.12.021 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00881205v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437951300829X</els_id><sourcerecordid>S002437951300829X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-88a83dc5363297bf903d1fff99e43def53ab9abff8e449d9133d7ad3b15bff353</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN1sRWZ8L2_SSXBVirVCwU1dh0w-NGXaKUlb8N87peLS1YPLPRfeYeweoULAydO66oypOCBVyCvgeMFGKBsqUYrJJRsB8LqkRolrdpPzGgDqBviIPa5Sv4vWdEXbH7YuF6FPhY-ffns03cHnog_FxuxTtD7fsqtguuzvfu-YfcxfVrNFuXx_fZtNl6Wlpt6XUhpJzgqaEFdNGxSQwxCCUr4m54Mg0yrThiB9XSunkMg1xlGLYghJ0Jg9nHe_TKd3KW5M-ta9iXoxXepTBiAlchBHHLp47trU55x8-AMQ9MmMXuvBjD6Z0cj1YGZgns-MH544Rp90ttFvrXcxebvXro__0D888Gqq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tropical bounds for eigenvalues of matrices</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akian, Marianne ; Gaubert, Stéphane ; Marchesini, Andrea</creator><creatorcontrib>Akian, Marianne ; Gaubert, Stéphane ; Marchesini, Andrea</creatorcontrib><description>Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2013.12.021</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combinatorics ; Location of eigenvalues ; Log-majorization ; Mathematics ; Ostrowskiʼs inequalities ; Parametric optimal assignment ; Spectral Theory ; Tropical geometry</subject><ispartof>Linear algebra and its applications, 2014-04, Vol.446, p.281-303</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-88a83dc5363297bf903d1fff99e43def53ab9abff8e449d9133d7ad3b15bff353</citedby><cites>FETCH-LOGICAL-c374t-88a83dc5363297bf903d1fff99e43def53ab9abff8e449d9133d7ad3b15bff353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2013.12.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00881205$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Akian, Marianne</creatorcontrib><creatorcontrib>Gaubert, Stéphane</creatorcontrib><creatorcontrib>Marchesini, Andrea</creatorcontrib><title>Tropical bounds for eigenvalues of matrices</title><title>Linear algebra and its applications</title><description>Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1.</description><subject>Combinatorics</subject><subject>Location of eigenvalues</subject><subject>Log-majorization</subject><subject>Mathematics</subject><subject>Ostrowskiʼs inequalities</subject><subject>Parametric optimal assignment</subject><subject>Spectral Theory</subject><subject>Tropical geometry</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN1sRWZ8L2_SSXBVirVCwU1dh0w-NGXaKUlb8N87peLS1YPLPRfeYeweoULAydO66oypOCBVyCvgeMFGKBsqUYrJJRsB8LqkRolrdpPzGgDqBviIPa5Sv4vWdEXbH7YuF6FPhY-ffns03cHnog_FxuxTtD7fsqtguuzvfu-YfcxfVrNFuXx_fZtNl6Wlpt6XUhpJzgqaEFdNGxSQwxCCUr4m54Mg0yrThiB9XSunkMg1xlGLYghJ0Jg9nHe_TKd3KW5M-ta9iXoxXepTBiAlchBHHLp47trU55x8-AMQ9MmMXuvBjD6Z0cj1YGZgns-MH544Rp90ttFvrXcxebvXro__0D888Gqq</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Akian, Marianne</creator><creator>Gaubert, Stéphane</creator><creator>Marchesini, Andrea</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20140401</creationdate><title>Tropical bounds for eigenvalues of matrices</title><author>Akian, Marianne ; Gaubert, Stéphane ; Marchesini, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-88a83dc5363297bf903d1fff99e43def53ab9abff8e449d9133d7ad3b15bff353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combinatorics</topic><topic>Location of eigenvalues</topic><topic>Log-majorization</topic><topic>Mathematics</topic><topic>Ostrowskiʼs inequalities</topic><topic>Parametric optimal assignment</topic><topic>Spectral Theory</topic><topic>Tropical geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akian, Marianne</creatorcontrib><creatorcontrib>Gaubert, Stéphane</creatorcontrib><creatorcontrib>Marchesini, Andrea</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akian, Marianne</au><au>Gaubert, Stéphane</au><au>Marchesini, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical bounds for eigenvalues of matrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>446</volume><spage>281</spage><epage>303</epage><pages>281-303</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2013.12.021</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2014-04, Vol.446, p.281-303 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00881205v1 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Combinatorics Location of eigenvalues Log-majorization Mathematics Ostrowskiʼs inequalities Parametric optimal assignment Spectral Theory Tropical geometry |
title | Tropical bounds for eigenvalues of matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20bounds%20for%20eigenvalues%20of%20matrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Akian,%20Marianne&rft.date=2014-04-01&rft.volume=446&rft.spage=281&rft.epage=303&rft.pages=281-303&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2013.12.021&rft_dat=%3Celsevier_hal_p%3ES002437951300829X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002437951300829X&rfr_iscdi=true |