Tropical bounds for eigenvalues of matrices
Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, whe...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2014-04, Vol.446, p.281-303 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2013.12.021 |