Tropical bounds for eigenvalues of matrices

Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2014-04, Vol.446, p.281-303
Hauptverfasser: Akian, Marianne, Gaubert, Stéphane, Marchesini, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let λ1,…,λn denote the eigenvalues of a n×n matrix, ordered by nonincreasing absolute value, and let γ1≥⋯≥γn denote the tropical eigenvalues of an associated n×n matrix, obtained by replacing every entry of the original matrix by its absolute value. We show that for all 1≤k≤n, |λ1⋯λk|≤Cn,kγ1⋯γk, where Cn,k is a combinatorial constant depending only on k and on the pattern of the matrix. This generalizes an inequality by Friedland (1986), corresponding to the special case k=1.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2013.12.021