Opto-optical light deflection

Light deflection is accomplished by diffraction from a transient index modulation established as a grating of variable frequency in an optical material by the interference of two controlling light beams. This device may be considered an opto-optical analog to an acoustooptical deflector, in that a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1983-03, Vol.22 (5), p.690-697
Hauptverfasser: Sincerbox, G T, Roosen, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light deflection is accomplished by diffraction from a transient index modulation established as a grating of variable frequency in an optical material by the interference of two controlling light beams. This device may be considered an opto-optical analog to an acoustooptical deflector, in that a change in angular deflection is created by altering the frequency of the diffraction grating. In this paper we report on a technique for altering the grating frequency by changing the wavelength of the control beams and the use of a novel optical system to maintain the Bragg condition over a wide range of frequencies. Configurations exhibiting very large angular deflections have been designed using a computer simulation and optimization program that allows minimization of the Bragg detuning. This new method of light deflection allows either discrete or continuous light scanning or modulation. A particular example using lithium niobate will be discussed which produces an 11.8 degrees deflection from a 0.027-micron wavelength change and with an angular detuning of lessthan +/-0.03 degrees. The use of other materials, inorganic, organic, and dispersive, will also be discussed.
ISSN:1559-128X
0003-6935
1539-4522
2155-3165
DOI:10.1364/AO.22.000690