Enhanced Colorimetric Detection on Porous Microarrays Using in Situ Substrate Production

A new technique is reported for the enhanced colorimetric detection of multiplexed hybridization onto porous membrane-based microarrays. This approach combines the use of horseradish peroxidase (HRP) as a label together with a chromogen substrate and a local production of the hydrogen peroxide requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-05, Vol.83 (9), p.3610-3615
Hauptverfasser: Le Goff, Gaelle C, Blum, Loïc J, Marquette, Christophe A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new technique is reported for the enhanced colorimetric detection of multiplexed hybridization onto porous membrane-based microarrays. This approach combines the use of horseradish peroxidase (HRP) as a label together with a chromogen substrate and a local production of the hydrogen peroxide required for substrate oxidation. This in situ production of coreagent is obtained using glucose oxidase (GOx) directly immobilized within the microarray porous membrane mesh. The oxidation of glucose by the immobilized GOx produces hydrogen peroxide which itself enables the oxidation of TMB (3,3′,5,5′-tetramethylbenzidine) by HRP and yields a blue precipitate on positive spots. Thanks to a coreagent overconcentration within the membrane, this design drastically surpasses the performances of the standard TMB/H2O2 kit used for peroxidase label detection. The obtained target limit of detection is then 50 times lower (20 pM) than the one obtained with the standard kit approach, and the dynamic range expands at least one decade. Furthermore, the developed method was shown to compete well with the widely used alkaline phosphatase-BCIP (5-bromo-4-chloro-3-indolyl phosphate)/NBT (nitro blue tetrazolium chloride) readout while minimizing background signal. The method was finally successfully applied to the multiplex detection of single nucleotide polymorphisms (SNPs) in complex PCR samples. The background lowering was impacted here positively on the SNPs’ detection by increasing the complementary/noncomplementary signal ratio.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac200306d