Well posedness of a linearized fractional derivative fluid model

The one-dimensional fractional derivative Maxwell model (e.g. Palade, et al., Rheol. Acta 35 (1996) 265), of importance in modeling the linear viscoelastic response in the glass transition region, has been generalized in Palade, et al., Internat. J. Engrg. Sci. 37 (1999) 315, to objective three-dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2011, Vol.380 (1), p.188-203
Hauptverfasser: Heibig, Arnaud, Palade, Liviu Iulian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The one-dimensional fractional derivative Maxwell model (e.g. Palade, et al., Rheol. Acta 35 (1996) 265), of importance in modeling the linear viscoelastic response in the glass transition region, has been generalized in Palade, et al., Internat. J. Engrg. Sci. 37 (1999) 315, to objective three-dimensional constitutive equations (CEs) for both fluids and solids. Regarding the rest state stability of the fluid CE, in Heibig and Palade, J. Math. Phys. 49 (2008) 043101, we gave a proof for the existence of weak solutions to the corresponding boundary value problem. The aim of this work is to achieve the study of the existence and uniqueness of the aforementioned solutions and to present smoothness results.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2011.02.047