Activated Sludge Acclimation for Hydrophobic VOC Removal in a Two-Phase Partitioning Reactor

The effect of activated sludge acclimation on the biodegradation of toluene and dimethyldisulphide (DMDS) in the presence of a non-aqueous phase liquid, polydimethylsiloxane (PDMS), in a two-phase partitioning bioreactor was characterized. The influence of the presence of PDMS, at a ratio of 25% (v/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2012-07, Vol.223 (6), p.3117-3124
Hauptverfasser: Darracq, Guillaume, Couvert, Annabelle, Couriol, Catherine, Dumont, Eric, Amrane, Abdeltif, Le Cloirec, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of activated sludge acclimation on the biodegradation of toluene and dimethyldisulphide (DMDS) in the presence of a non-aqueous phase liquid, polydimethylsiloxane (PDMS), in a two-phase partitioning bioreactor was characterized. The influence of the presence of PDMS, at a ratio of 25% (v/v), and acclimation of activated sludge on two hydrophobic VOC biodegradation was studied. Activated sludge were acclimated to each VOC and in the presence of the non-aqueous phase liquid, namely in the emulsion of PDMS in water. Using acclimated cells, 97.9% and 108.7% improvement of the mean biodegradation rates were recorded for toluene and DMDS, respectively, if compared to the values recorded in the absence of acclimation. While and in agreement with the lower solubility in water of DMDS if compared to toluene, a most significant effect of PDMS addition on the rate of DMDS removal was recorded, 87.0% and 153.6% for toluene and DMDS, respectively. In addition and if both biomass acclimation and PDMS addition were considered, overall improvements of the removal rates were 204% and 338% for toluene and DMDS.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-012-1094-8