A continuous/discrete fractional Noether’s theorem
► Continuous and discret fractional Lagrangian systems. ► Continuous and discrete Noether’s theorem. ► Explicit first integrals. We prove a fractional Noether’s theorem for fractional Lagrangian systems invariant under a symmetry group both in the continuous and discrete cases. This provides an expl...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2013-04, Vol.18 (4), p.878-887 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Continuous and discret fractional Lagrangian systems. ► Continuous and discrete Noether’s theorem. ► Explicit first integrals.
We prove a fractional Noether’s theorem for fractional Lagrangian systems invariant under a symmetry group both in the continuous and discrete cases. This provides an explicit conservation law (first integral) given by a closed formula which can be algorithmically implemented. In the discrete case, the conservation law is moreover computable in a finite number of steps. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2012.09.003 |