A continuous/discrete fractional Noether’s theorem

► Continuous and discret fractional Lagrangian systems. ► Continuous and discrete Noether’s theorem. ► Explicit first integrals. We prove a fractional Noether’s theorem for fractional Lagrangian systems invariant under a symmetry group both in the continuous and discrete cases. This provides an expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2013-04, Vol.18 (4), p.878-887
Hauptverfasser: Bourdin, Loïc, Cresson, Jacky, Greff, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Continuous and discret fractional Lagrangian systems. ► Continuous and discrete Noether’s theorem. ► Explicit first integrals. We prove a fractional Noether’s theorem for fractional Lagrangian systems invariant under a symmetry group both in the continuous and discrete cases. This provides an explicit conservation law (first integral) given by a closed formula which can be algorithmically implemented. In the discrete case, the conservation law is moreover computable in a finite number of steps.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2012.09.003