Discrete exponential Bayesian networks: Definition, learning and application for density estimation

Our work aims at developing or expliciting bridges between Bayesian networks (BNs) and Natural Exponential Families, by proposing discrete exponential Bayesian networks as a generalization of usual discrete ones. We introduce a family of prior distributions which generalizes the Dirichlet prior appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-08, Vol.137, p.142-149
Hauptverfasser: Jarraya, Aida, Leray, Philippe, Masmoudi, Afif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our work aims at developing or expliciting bridges between Bayesian networks (BNs) and Natural Exponential Families, by proposing discrete exponential Bayesian networks as a generalization of usual discrete ones. We introduce a family of prior distributions which generalizes the Dirichlet prior applied on discrete Bayesian networks, and then we determine the overall posterior distribution. Subsequently, we develop the Bayesian estimators of the parameters, and a new score function that extends the Bayesian Dirichlet score for BN structure learning. Our goal is to determine empirically in which contexts some of our discrete exponential BNs (Poisson deBNs) can be an effective alternative to usual BNs for density estimation.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2013.05.061