The q -tangent and q -secant numbers via continued fractions

It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2010-10, Vol.31 (7), p.1689-1705
Hauptverfasser: Shin, Heesung, Zeng, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1705
container_issue 7
container_start_page 1689
container_title European journal of combinatorics
container_volume 31
creator Shin, Heesung
Zeng, Jiang
description It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fraction expansion formulae, which permit us to give a unified treatment of Josuat-Vergès’ two formulae and also to derive a new q -analogue of the aforementioned formulae. Our approach is based on a ( p , q ) -analogue of tangent and secant numbers via continued fractions and also the generating function of permutations with respect to the quintuple statistic consisting of fixed point number, weak excedance number, crossing number, nesting number and inversion number. We also give a combinatorial proof of Josuat-Vergès’ formulae by using a new linear model of derangements.
doi_str_mv 10.1016/j.ejc.2010.04.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00863434v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669810000491</els_id><sourcerecordid>1283701532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a76379fcd21380c1dc68f038e42bacb3870421b9387e033c9e67790f1ab64f853</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIDuOUIh4R1nDq24FIhoEiVuJSz5Tgb6ih1WjupxO9xFcSR086sZnY1Q8gthYwC5Q9thq3JcogcigyAnZEZBblIpSzpOZkBjZhzKS7JVQgtAKULxmbkabPF5JCkg3Zf6IZEu_pEAxodmRt3FfqQHK1OTO8G60ask8ZrM9jehWty0egu4M3vnJPP15fN8ypdf7y9Py_XqWG8GFJdclbKxtQ5ZQIMrQ0XDTCBRV5pUzFRQpHTSkaAwJiRyMtSQkN1xYtGLNic3E93t7pTe2932n-rXlu1Wq7VaQcgOCtYcaRRezdp974_jBgGtbPBYNdph_0YFM0FKyGGz6OUTlLj-xA8Nn-3KahTq6pVsVV1alVBEb-w6HmcPBjzHi16FYxFZ7C2Hs2g6t7-4_4B3998mQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283701532</pqid></control><display><type>article</type><title>The q -tangent and q -secant numbers via continued fractions</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shin, Heesung ; Zeng, Jiang</creator><creatorcontrib>Shin, Heesung ; Zeng, Jiang</creatorcontrib><description>It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fraction expansion formulae, which permit us to give a unified treatment of Josuat-Vergès’ two formulae and also to derive a new q -analogue of the aforementioned formulae. Our approach is based on a ( p , q ) -analogue of tangent and secant numbers via continued fractions and also the generating function of permutations with respect to the quintuple statistic consisting of fixed point number, weak excedance number, crossing number, nesting number and inversion number. We also give a combinatorial proof of Josuat-Vergès’ formulae by using a new linear model of derangements.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2010.04.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combinatorial analysis ; Combinatorics ; Inversions ; Mathematical models ; Mathematics ; Nesting ; Permutations ; Proving ; Statistics ; Tangents</subject><ispartof>European journal of combinatorics, 2010-10, Vol.31 (7), p.1689-1705</ispartof><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a76379fcd21380c1dc68f038e42bacb3870421b9387e033c9e67790f1ab64f853</citedby><cites>FETCH-LOGICAL-c364t-a76379fcd21380c1dc68f038e42bacb3870421b9387e033c9e67790f1ab64f853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669810000491$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00863434$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Heesung</creatorcontrib><creatorcontrib>Zeng, Jiang</creatorcontrib><title>The q -tangent and q -secant numbers via continued fractions</title><title>European journal of combinatorics</title><description>It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fraction expansion formulae, which permit us to give a unified treatment of Josuat-Vergès’ two formulae and also to derive a new q -analogue of the aforementioned formulae. Our approach is based on a ( p , q ) -analogue of tangent and secant numbers via continued fractions and also the generating function of permutations with respect to the quintuple statistic consisting of fixed point number, weak excedance number, crossing number, nesting number and inversion number. We also give a combinatorial proof of Josuat-Vergès’ formulae by using a new linear model of derangements.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Inversions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nesting</subject><subject>Permutations</subject><subject>Proving</subject><subject>Statistics</subject><subject>Tangents</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMIDuOUIh4R1nDq24FIhoEiVuJSz5Tgb6ih1WjupxO9xFcSR086sZnY1Q8gthYwC5Q9thq3JcogcigyAnZEZBblIpSzpOZkBjZhzKS7JVQgtAKULxmbkabPF5JCkg3Zf6IZEu_pEAxodmRt3FfqQHK1OTO8G60ask8ZrM9jehWty0egu4M3vnJPP15fN8ypdf7y9Py_XqWG8GFJdclbKxtQ5ZQIMrQ0XDTCBRV5pUzFRQpHTSkaAwJiRyMtSQkN1xYtGLNic3E93t7pTe2932n-rXlu1Wq7VaQcgOCtYcaRRezdp974_jBgGtbPBYNdph_0YFM0FKyGGz6OUTlLj-xA8Nn-3KahTq6pVsVV1alVBEb-w6HmcPBjzHi16FYxFZ7C2Hs2g6t7-4_4B3998mQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Shin, Heesung</creator><creator>Zeng, Jiang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20101001</creationdate><title>The q -tangent and q -secant numbers via continued fractions</title><author>Shin, Heesung ; Zeng, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a76379fcd21380c1dc68f038e42bacb3870421b9387e033c9e67790f1ab64f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Inversions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nesting</topic><topic>Permutations</topic><topic>Proving</topic><topic>Statistics</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Heesung</creatorcontrib><creatorcontrib>Zeng, Jiang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Heesung</au><au>Zeng, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The q -tangent and q -secant numbers via continued fractions</atitle><jtitle>European journal of combinatorics</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>31</volume><issue>7</issue><spage>1689</spage><epage>1705</epage><pages>1689-1705</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fraction expansion formulae, which permit us to give a unified treatment of Josuat-Vergès’ two formulae and also to derive a new q -analogue of the aforementioned formulae. Our approach is based on a ( p , q ) -analogue of tangent and secant numbers via continued fractions and also the generating function of permutations with respect to the quintuple statistic consisting of fixed point number, weak excedance number, crossing number, nesting number and inversion number. We also give a combinatorial proof of Josuat-Vergès’ formulae by using a new linear model of derangements.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2010.04.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2010-10, Vol.31 (7), p.1689-1705
issn 0195-6698
1095-9971
language eng
recordid cdi_hal_primary_oai_HAL_hal_00863434v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Combinatorial analysis
Combinatorics
Inversions
Mathematical models
Mathematics
Nesting
Permutations
Proving
Statistics
Tangents
title The q -tangent and q -secant numbers via continued fractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20q%20-tangent%20and%20q%20-secant%20numbers%20via%20continued%20fractions&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Shin,%20Heesung&rft.date=2010-10-01&rft.volume=31&rft.issue=7&rft.spage=1689&rft.epage=1705&rft.pages=1689-1705&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2010.04.003&rft_dat=%3Cproquest_hal_p%3E1283701532%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283701532&rft_id=info:pmid/&rft_els_id=S0195669810000491&rfr_iscdi=true