The q -tangent and q -secant numbers via continued fractions

It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2010-10, Vol.31 (7), p.1689-1705
Hauptverfasser: Shin, Heesung, Zeng, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that the ( − 1 ) -evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q -analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fraction expansion formulae, which permit us to give a unified treatment of Josuat-Vergès’ two formulae and also to derive a new q -analogue of the aforementioned formulae. Our approach is based on a ( p , q ) -analogue of tangent and secant numbers via continued fractions and also the generating function of permutations with respect to the quintuple statistic consisting of fixed point number, weak excedance number, crossing number, nesting number and inversion number. We also give a combinatorial proof of Josuat-Vergès’ formulae by using a new linear model of derangements.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2010.04.003