About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study
This study is aimed at comparing the response of TS-based (epoxy) and TP-based (PPS or PEEK) laminates subjected to low velocity impacts. C-scan inspections showed that impact led to diamond-shaped damage resulting from different failure mechanisms: fiber breakages in warp and weft directions, more...
Gespeichert in:
Veröffentlicht in: | Composite structures 2013-07, Vol.101, p.9-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study is aimed at comparing the response of TS-based (epoxy) and TP-based (PPS or PEEK) laminates subjected to low velocity impacts. C-scan inspections showed that impact led to diamond-shaped damage resulting from different failure mechanisms: fiber breakages in warp and weft directions, more or less inter-laminar and intra-ply damage, and extensive delamination in C/PEEK and C/epoxy laminates. The permanent indentation can be ascribed to specific mechanisms which mainly depend on many factors including the ultimate out-of-plane shear strength, and the interlaminar fracture toughness in modes I–II–III. In TP-based laminates, the matrix plasticization seems to play an important role in matrix-rich areas by locally promoting permanent deformations. Fiber-bridging also prevents the plies from opening in mode I, and slows down the propagation of interlaminar and intralaminar cracks in modes II–III. Both mechanisms seem to reduce the extension of damages, in particular, the subsequent delamination for a given impact energy. In epoxy-based laminates, the debris of broken fibers and matrix get stuck in the cracks and the adjacent layers, and create a sort of blocking system that prevents the cracks and delamination from closing after impact. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2013.01.025 |