Large restricted sumsets in general abelian group

Let A, B and S be three subsets of a finite Abelian group G. The restricted sumset of A and B with respect to S is defined as A\wedge^{S} B= {a+b: a in A, b in B and a-b not in S}. Let L_S=max_{z in G}| {(x,y): x,y in G, x+y=z and x-y in S}|. A simple application of the pigeonhole principle shows th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2013-11, Vol.34 (8), p.1348-1364
Hauptverfasser: Hamidoune, Yahya Ould, Lopez, Susana C., Plagne, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A, B and S be three subsets of a finite Abelian group G. The restricted sumset of A and B with respect to S is defined as A\wedge^{S} B= {a+b: a in A, b in B and a-b not in S}. Let L_S=max_{z in G}| {(x,y): x,y in G, x+y=z and x-y in S}|. A simple application of the pigeonhole principle shows that |A|+|B|>|G|+L_S implies A\wedge^S B=G. We then prove that if |A|+|B|=|G|+L_S then |A\wedge^S B|>= |G|-2|S|. We also characterize the triples of sets (A,B,S) such that |A|+|B|=|G|+L_S and |A\wedge^S B|= |G|-2|S|. Moreover, in this case, we also provide the structure of the set G\setminus (A\wedge^S B).
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2013.05.020