Large restricted sumsets in general abelian group
Let A, B and S be three subsets of a finite Abelian group G. The restricted sumset of A and B with respect to S is defined as A\wedge^{S} B= {a+b: a in A, b in B and a-b not in S}. Let L_S=max_{z in G}| {(x,y): x,y in G, x+y=z and x-y in S}|. A simple application of the pigeonhole principle shows th...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2013-11, Vol.34 (8), p.1348-1364 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A, B and S be three subsets of a finite Abelian group G. The restricted sumset of A and B with respect to S is defined as A\wedge^{S} B= {a+b: a in A, b in B and a-b not in S}. Let L_S=max_{z in G}| {(x,y): x,y in G, x+y=z and x-y in S}|. A simple application of the pigeonhole principle shows that |A|+|B|>|G|+L_S implies A\wedge^S B=G. We then prove that if |A|+|B|=|G|+L_S then |A\wedge^S B|>= |G|-2|S|. We also characterize the triples of sets (A,B,S) such that |A|+|B|=|G|+L_S and |A\wedge^S B|= |G|-2|S|. Moreover, in this case, we also provide the structure of the set G\setminus (A\wedge^S B). |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2013.05.020 |