The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields
Global and local regularity of functions in anisotropic function spaces is analyzed in the common framework provided by hyperbolic wavelet bases. Local and directional regularity features are characterized by means of global quantities derived from the coefficients of hyperbolic wavelet decompositio...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2015-01, Vol.31 (1), p.313-348 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global and local regularity of functions in anisotropic function spaces is analyzed in the common framework provided by hyperbolic wavelet bases. Local and directional regularity features are characterized by means of global quantities derived from the coefficients of hyperbolic wavelet decompositions. A multifractal analysis is introduced, that jointly accounts for scale invariance and anisotropy, and its properties are investigated. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/836 |