Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions

Despite an increase in the number of experimental and numerical studies dedicated to spinal trauma, the influence of the rate of loading or displacement on lumbar spine injuries remains unclear. In the present work, we developed a bio-realistic finite element model (FEM) of the lumbar spine using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2012-09, Vol.50 (9), p.903-915
Hauptverfasser: Wagnac, Eric, Arnoux, Pierre-Jean, Garo, Anaïs, Aubin, Carl-Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite an increase in the number of experimental and numerical studies dedicated to spinal trauma, the influence of the rate of loading or displacement on lumbar spine injuries remains unclear. In the present work, we developed a bio-realistic finite element model (FEM) of the lumbar spine using a comprehensive geometrical representation of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The FEM was validated against published experimental data and used to compare the initiation sites of spinal injuries under low (LD) and high (HD) dynamic compression, flexion, extension, anterior shear, and posterior shear. Simulations resulted in force–displacement and moment-angular rotation curves well within experimental corridors, with the exception of LD flexion where angular stiffness was higher than experimental values. Such a discrepancy is attributed to the initial toe-region of the ligaments not being included in the material law used in the study. Spinal injuries were observed at different initiation sites under LD and HD loading conditions, except under shear loads. These findings suggest that the strain rate dependent behavior of spinal components plays a significant role in load-sharing and failure mechanisms of the spine under different loading conditions.
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-012-0908-6