Hard projectile penetration and trajectory stability
We present a general framework to describe the dynamics of a hard projectile penetrating into a solid target. Rigid body dynamics, differential area force law and semi-empirical resistance function are used to formulate the motion of the hard projectile. The proposed model is capable of predicting t...
Gespeichert in:
Veröffentlicht in: | International journal of impact engineering 2011-10, Vol.38 (10), p.815-823 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a general framework to describe the dynamics of a hard projectile penetrating into a solid target. Rigid body dynamics, differential area force law and semi-empirical resistance function are used to formulate the motion of the hard projectile. The proposed model is capable of predicting the projectile trajectory under various oblique and yaw angles. Critical conditions for the occurrences of the instability and the reverse of the projectile trajectory are discussed. It was found that the relative location of mass centre of the projectile has strong influence on the control of the rotation of the projectile, and thus, the projectile stability and the change of trajectory direction. The validity of the proposed model is limited to deep penetration and when the wake separation and reattachment between projectile body and target have negligible influence on the target resistance to the projectile. |
---|---|
ISSN: | 0734-743X 1879-3509 |
DOI: | 10.1016/j.ijimpeng.2011.05.005 |