The maximal number of cubic runs in a word
A run is an inclusion maximal occurrence in a word (as a subinterval) of a factor in which the period repeats at least twice. The maximal number of runs in a word of length n has been thoroughly studied, and is known to be between 0.944n and 1.029n. The proofs are very technical. In this paper we in...
Gespeichert in:
Veröffentlicht in: | Journal of computer and system sciences 2012-11, Vol.78 (6), p.1828-1836 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A run is an inclusion maximal occurrence in a word (as a subinterval) of a factor in which the period repeats at least twice. The maximal number of runs in a word of length n has been thoroughly studied, and is known to be between 0.944n and 1.029n. The proofs are very technical. In this paper we investigate cubic runs, in which the period repeats at least three times. We show the upper bound on their maximal number, cubic-runs(n), in a word of length n: cubic-runs(n) |
---|---|
ISSN: | 0022-0000 1090-2724 |
DOI: | 10.1016/j.jcss.2011.12.005 |