The evaluation of a quartic integral via Schwinger, Schur and Bessel

We provide additional methods for the evaluation of the integral where m ∈ℕ and a ∈(−1,∞) in the form where P m ( a ) is a polynomial in a . The first one is based on a method of Schwinger to evaluate integrals appearing in Feynman diagrams, the second one is a byproduct of an expression for a ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2012-05, Vol.28 (1), p.1-14
Hauptverfasser: Amdeberhan, Tewodros, Moll, Victor H., Vignat, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide additional methods for the evaluation of the integral where m ∈ℕ and a ∈(−1,∞) in the form where P m ( a ) is a polynomial in a . The first one is based on a method of Schwinger to evaluate integrals appearing in Feynman diagrams, the second one is a byproduct of an expression for a rational integral in terms of Schur functions. Finally, the third proof is obtained from an integral representation involving modified Bessel functions.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-010-9291-9