Toric surfaces, K-stability and Calabi flow

Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ < C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2014, Vol.276 (3-4), p.953-968
1. Verfasser: Huang, Hongnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 3-4
container_start_page 953
container_title Mathematische Zeitschrift
container_volume 276
creator Huang, Hongnian
description Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ < C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded by C 3 . Moreoever, we can show that there is a constant M > 0 depending only on C 1 , C 2 and P such that Donaldson’s M -condition holds for u . As an application, we show that if ( X , P ) is (analytic) relative K -stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.
doi_str_mv 10.1007/s00209-013-1228-8
format Article
fullrecord <record><control><sourceid>hal_sprin</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00830729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00830729v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1478-96923b30f61d6240cdba8a53d6d0e6950878ee171c2a6a8810c39d1f54d3f8773</originalsourceid><addsrcrecordid>eNotkMFKxDAQhoMoWFcfwFuvotGZJG2mx6W4rljwsp5D2rRul7qVZFfZtzelnoZ__o9h-Bi7RXhEAP0UAAQUHFByFII4nbEElRQcSchzlsQ64xlpdcmuQtgBxFKrhN1vRt83aTj6zjZteEjfeDjYuh_6wym1e5eWdogx7Ybx95pddHYI7c3_XLCP1fOmXPPq_eW1XFZ8i0oTL_JCyFpCl6PLhYLG1ZZsJl3uoM2LDEhT26LGRtjcEiE0snDYZcrJjrSWC3Y3393awXz7_sv6kxltb9bLykw7AJKgRfGDkRUzGyK4_2y92Y1Hv4_vGQQzqTGzGhPVmEmNIfkH1fFToQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toric surfaces, K-stability and Calabi flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Hongnian</creator><creatorcontrib>Huang, Hongnian</creatorcontrib><description>Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ &lt; C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded by C 3 . Moreoever, we can show that there is a constant M &gt; 0 depending only on C 1 , C 2 and P such that Donaldson’s M -condition holds for u . As an application, we show that if ( X , P ) is (analytic) relative K -stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-013-1228-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Differential Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2014, Vol.276 (3-4), p.953-968</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-h1478-96923b30f61d6240cdba8a53d6d0e6950878ee171c2a6a8810c39d1f54d3f8773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-013-1228-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-013-1228-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00830729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hongnian</creatorcontrib><title>Toric surfaces, K-stability and Calabi flow</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ &lt; C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded by C 3 . Moreoever, we can show that there is a constant M &gt; 0 depending only on C 1 , C 2 and P such that Donaldson’s M -condition holds for u . As an application, we show that if ( X , P ) is (analytic) relative K -stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkMFKxDAQhoMoWFcfwFuvotGZJG2mx6W4rljwsp5D2rRul7qVZFfZtzelnoZ__o9h-Bi7RXhEAP0UAAQUHFByFII4nbEElRQcSchzlsQ64xlpdcmuQtgBxFKrhN1vRt83aTj6zjZteEjfeDjYuh_6wym1e5eWdogx7Ybx95pddHYI7c3_XLCP1fOmXPPq_eW1XFZ8i0oTL_JCyFpCl6PLhYLG1ZZsJl3uoM2LDEhT26LGRtjcEiE0snDYZcrJjrSWC3Y3393awXz7_sv6kxltb9bLykw7AJKgRfGDkRUzGyK4_2y92Y1Hv4_vGQQzqTGzGhPVmEmNIfkH1fFToQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Huang, Hongnian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>1XC</scope></search><sort><creationdate>2014</creationdate><title>Toric surfaces, K-stability and Calabi flow</title><author>Huang, Hongnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1478-96923b30f61d6240cdba8a53d6d0e6950878ee171c2a6a8810c39d1f54d3f8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongnian</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hongnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toric surfaces, K-stability and Calabi flow</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2014</date><risdate>2014</risdate><volume>276</volume><issue>3-4</issue><spage>953</spage><epage>968</epage><pages>953-968</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ &lt; C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded by C 3 . Moreoever, we can show that there is a constant M &gt; 0 depending only on C 1 , C 2 and P such that Donaldson’s M -condition holds for u . As an application, we show that if ( X , P ) is (analytic) relative K -stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-013-1228-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2014, Vol.276 (3-4), p.953-968
issn 0025-5874
1432-1823
language eng
recordid cdi_hal_primary_oai_HAL_hal_00830729v1
source SpringerLink Journals - AutoHoldings
subjects Differential Geometry
Mathematics
Mathematics and Statistics
title Toric surfaces, K-stability and Calabi flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toric%20surfaces,%20K-stability%20and%20Calabi%20flow&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Huang,%20Hongnian&rft.date=2014&rft.volume=276&rft.issue=3-4&rft.spage=953&rft.epage=968&rft.pages=953-968&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-013-1228-8&rft_dat=%3Chal_sprin%3Eoai_HAL_hal_00830729v1%3C/hal_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true