Toric surfaces, K-stability and Calabi flow

Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ < C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2014, Vol.276 (3-4), p.953-968
1. Verfasser: Huang, Hongnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a toric surface and u be a normalized symplectic potential on the corresponding polygon P . Suppose that the Riemannian curvature is bounded by a constant C 1 and ∫ ∂ P u d σ < C 2 , then there exists a constant C 3 depending only on C 1 , C 2 and P such that the diameter of X is bounded by C 3 . Moreoever, we can show that there is a constant M > 0 depending only on C 1 , C 2 and P such that Donaldson’s M -condition holds for u . As an application, we show that if ( X , P ) is (analytic) relative K -stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-013-1228-8