INTERMEDIATE SUMS ON POLYHEDRA: COMPUTATION AND REAL EHRHART THEORY

We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok in [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp. 75 (2006), 1449–1466]. For a given polytope  with facets parallel to rational hyperplanes and a rational s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2013-01, Vol.59 (1), p.1-22
Hauptverfasser: Baldoni, V., Berline, N., Köppe, M., Vergne, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok in [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp. 75 (2006), 1449–1466]. For a given polytope  with facets parallel to rational hyperplanes and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope  parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step-polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579312000101