Approximation of the biharmonic problem using P1 finite elements

We study in this paper a P1 finite element approximation of the solution in of a biharmonic problem. Since the P1 finite element method only leads to an approximate solution in , a discrete Laplace operator is used in the numerical scheme. The convergence of the method is shown, for the general case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of numerical mathematics 2011-05, Vol.19 (1), p.1-26
Hauptverfasser: Eymard, R., Herbin, R., Rhoudaf, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study in this paper a P1 finite element approximation of the solution in of a biharmonic problem. Since the P1 finite element method only leads to an approximate solution in , a discrete Laplace operator is used in the numerical scheme. The convergence of the method is shown, for the general case of a solution with regularity, thanks to compactness results and to the use of a particular interpolation of regular functions with compact supports. An error estimate is proved in the case where the solution is in . The order of this error estimate is equal to 1 if the solution has a compact support, and only 1/5 otherwise. Numerical results show that these orders are not sharp in particular situations.
ISSN:1570-2820
1569-3953
DOI:10.1515/jnum.2011.001