Cox process functional learning

This article addresses the problem of functional supervised classification of Cox process trajectories, whose random intensity is driven by some exogenous random covariable. The classification task is achieved through a regularized convex empirical risk minimization procedure, and a non asymptotic o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2015-10, Vol.18 (3), p.257-277
Hauptverfasser: Biau, Gérard, Cadre, Benoît, Paris, Quentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article addresses the problem of functional supervised classification of Cox process trajectories, whose random intensity is driven by some exogenous random covariable. The classification task is achieved through a regularized convex empirical risk minimization procedure, and a non asymptotic oracle inequality is derived. We show that the algorithm provides a Bayes-risk consistent classifier. Furthermore, it is proved that the classifier converges at a rate which adapts to the unknown regularity of the intensity process. Our results are obtained by taking advantage of martingale and stochastic calculus arguments, which are natural in this context and fully exploit the functional nature of the problem.
ISSN:1387-0874
1572-9311
DOI:10.1007/s11203-015-9115-z