Transmission conditions on interfaces for Hamilton–Jacobi–Bellman equations
We establish a comparison principle for a Hamilton–Jacobi–Bellman equation, more appropriately a system, related to an infinite horizon problem in presence of an interface. Namely a low dimensional subset of the state variable space where discontinuities in controlled dynamics and costs take place....
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2014-12, Vol.257 (11), p.3978-4014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a comparison principle for a Hamilton–Jacobi–Bellman equation, more appropriately a system, related to an infinite horizon problem in presence of an interface. Namely a low dimensional subset of the state variable space where discontinuities in controlled dynamics and costs take place. Since corresponding Hamiltonians, at least for the subsolution part, do not enjoy any semicontinuity property, the comparison argument is rather based on a separation principle of the controlled dynamics across the interface. For this, we essentially use the notion of ε-partition and minimal ε-partition for intervals of definition of an integral trajectory. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2014.07.015 |