A short proof of the logarithmic Bramson correction in Fisher-KPP equations
In this paper, we explain in simple PDE terms a famous result of Bramson about the loga- rithmic delay of the position of the solutions u(t, x) of Fisher-KPP reaction-diffusion equations in R, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparis...
Gespeichert in:
Veröffentlicht in: | Networks and heterogeneous media 2013, Vol.8 (1), p.275-289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explain in simple PDE terms a famous result of Bramson about the loga- rithmic delay of the position of the solutions u(t, x) of Fisher-KPP reaction-diffusion equations in R, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of u to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions u along their level sets to the profile of the minimal travelling front. |
---|---|
ISSN: | 1556-181X 1556-1801 1556-181X |
DOI: | 10.3934/nhm.2013.8.275 |