A short proof of the logarithmic Bramson correction in Fisher-KPP equations

In this paper, we explain in simple PDE terms a famous result of Bramson about the loga- rithmic delay of the position of the solutions u(t, x) of Fisher-KPP reaction-diffusion equations in R, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks and heterogeneous media 2013, Vol.8 (1), p.275-289
Hauptverfasser: Hamel, François, Nolen, James, Roquejoffre, Jean-Michel, Ryzhik, Lenya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we explain in simple PDE terms a famous result of Bramson about the loga- rithmic delay of the position of the solutions u(t, x) of Fisher-KPP reaction-diffusion equations in R, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of u to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions u along their level sets to the profile of the minimal travelling front.
ISSN:1556-181X
1556-1801
1556-181X
DOI:10.3934/nhm.2013.8.275