CONVEXITY OF LEVEL SETS FOR ELLIPTIC PROBLEMS IN CONVEX DOMAINS OR CONVEX RINGS: TWO COUNTEREXAMPLES

This paper deals with some geometrical properties of solutions of some semilinear elliptic equations in bounded convex domains or convex rings. Constant boundary conditions are imposed on the single component of the boundary when the domain is convex, or on each of the two components of the boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2016-04, Vol.138 (2), p.499-527
Hauptverfasser: Hamel, François, Nadirashvili, Nikolai, Sire, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with some geometrical properties of solutions of some semilinear elliptic equations in bounded convex domains or convex rings. Constant boundary conditions are imposed on the single component of the boundary when the domain is convex, or on each of the two components of the boundary when the domain is a convex ring. A function is called quasiconcave if its superlevel sets, defined in a suitable way when the domain is a convex ring, are all convex. In this paper, we prove that the superlevel sets of the solutions do not always inherit the convexity or ring-convexity of the domain. Namely, we give two counterexamples to this quasiconcavity property: the first one for some two-dimensional convex domains and the second one for some convex rings in any dimension.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2016.0012