Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations
The purpose of this paper is to describe a fully discrete approximation and its convergence to the continuum dynamical impact problem for the fourth-order Kirchhoff-Love plate model with nonpenetration Signorini contact condition. We extend to the case of plates the theoretical results of weak conve...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2013-01, Vol.33 (1), p.261-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to describe a fully discrete approximation and its convergence to the continuum dynamical impact problem for the fourth-order Kirchhoff-Love plate model with nonpenetration Signorini contact condition. We extend to the case of plates the theoretical results of weak convergence due to Y. Dumont and L. Paoli, which was stated for Euler-Bernouilli beams. In particular, this provides an existence result for the solution of this problem. Finally, we discuss the numerical results we obtain. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drr057 |