Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations

The purpose of this paper is to describe a fully discrete approximation and its convergence to the continuum dynamical impact problem for the fourth-order Kirchhoff-Love plate model with nonpenetration Signorini contact condition. We extend to the case of plates the theoretical results of weak conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2013-01, Vol.33 (1), p.261-294
Hauptverfasser: Pozzolini, C., Renard, Y., Salaun, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to describe a fully discrete approximation and its convergence to the continuum dynamical impact problem for the fourth-order Kirchhoff-Love plate model with nonpenetration Signorini contact condition. We extend to the case of plates the theoretical results of weak convergence due to Y. Dumont and L. Paoli, which was stated for Euler-Bernouilli beams. In particular, this provides an existence result for the solution of this problem. Finally, we discuss the numerical results we obtain.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drr057