Improving the sustainability of granular iron/pumice systems for water treatment
Metallic iron (Fe0) is currently used in subsurface and above-ground water filtration systems on a pragmatic basis. Recent theoretical studies have indicated that, to be sustainable, such systems should not contain more than 60% Fe0 (vol/vol). The prediction was already validated in a Fe0/sand syste...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2013-05, Vol.121, p.133-141 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metallic iron (Fe0) is currently used in subsurface and above-ground water filtration systems on a pragmatic basis. Recent theoretical studies have indicated that, to be sustainable, such systems should not contain more than 60% Fe0 (vol/vol). The prediction was already validated in a Fe0/sand system using methylene blue as an operational tracer. The present work is the first attempt to experimentally verify the new concept using pumice particles. A well-characterized pumice sample is used as operational supporting material and is mixed with 200 g of a granular Fe0, in volumetric proportions, varying from 0 to 100%. The resulting column systems are characterized (i) by the time dependent evolution of their hydraulic conductivity and (ii) for their efficiency for the removal of CuII, NiII, and ZnII from a three-contaminants-solution (about 0.3 mM of each metal). Test results showed a clear sustainability of the long term hydraulic conductivity with decreasing Fe0/pumice ratio. In fact, the pure Fe0 system clogged after 17 days, while the 25% Fe0 system could operate for 36 days. The experimental data confirmed the view that well-designed Fe0 PRBs may be successful at removing both reducible and non-reducible metal species.
► Fe0/additives mixtures are widely used for aqueous contaminant removal. ► Reliable methods for designing Fe0 filtration systems are still lacking. ► Additives have been mostly used to account for construction width requirements. ► Various Fe0/pumice ratios were tested for aqueous metal removal in dynamic systems. ► Results revealed the 25% Fe0 system as the most efficient and sustainable. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2013.02.042 |