Universal vertex-IRF transformation for quantum affine algebras
We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to $U_q(A^{(1)}_r)$ U q ( A r ( 1 ) ) . This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's c...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-10, Vol.53 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to
$U_q(A^{(1)}_r)$
U
q
(
A
r
(
1
)
)
. This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of
$U_q(A_1^{(1)})$
U
q
(
A
1
(
1
)
)
, it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-faces (IRF) height model. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4754699 |