Universal vertex-IRF transformation for quantum affine algebras

We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to $U_q(A^{(1)}_r)$ U q ( A r ( 1 ) ) . This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-10, Vol.53 (10)
Hauptverfasser: Buffenoir, E., Roche, Ph, Terras, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to $U_q(A^{(1)}_r)$ U q ( A r ( 1 ) ) . This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of $U_q(A_1^{(1)})$ U q ( A 1 ( 1 ) ) , it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-faces (IRF) height model.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4754699