A fourth‐order model for MEMS with clamped boundary conditions

The dynamical and stationary behaviors of a fourth‐order equation in the unit ball with clamped boundary conditions and a singular reaction term are investigated. The equation arises in the modeling of microelectromechanical systems and includes a positive voltage parameter λ. It is shown that there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2014-12, Vol.109 (6), p.1435-1464
Hauptverfasser: Laurençot, Philippe, Walker, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamical and stationary behaviors of a fourth‐order equation in the unit ball with clamped boundary conditions and a singular reaction term are investigated. The equation arises in the modeling of microelectromechanical systems and includes a positive voltage parameter λ. It is shown that there is a threshold value λ*>0 of the voltage parameter such that no radially symmetric stationary solution exists for λ>λ*, while at least two such solutions exist for λ∈(0,λ*). Local and global well‐posedness results are obtained for the corresponding hyperbolic and parabolic evolution problems as well as the occurrence of finite time singularities when λ>λ*.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms/pdu037