Hamilton-Jacobi-Bellman Equations on Multi-domains

A system of Hamilton–Jacobi (HJ) equations on a partition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhiping, Rao, Hasnaa, Zidani
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system of Hamilton–Jacobi (HJ) equations on a partition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{d}$\end{document} is considered, and a uniqueness and existence result of viscosity solution is analyzed. While the notion of viscosity solution is by now well known, the question of uniqueness of solution, when the Hamiltonian is discontinuous, remains an important issue. A uniqueness result has been derived for a class of problems, where the behavior of the solution, in the region of discontinuity of the Hamiltonian, is assumed to be irrelevant and can be ignored (see (Camilli, Siconolfi in Adv. Differ. Equ. 8(6):733–768, 2003)). Here, we provide a new uniqueness result for a more general class of Hamilton–Jacobi equations.
ISSN:0373-3149
2296-6072
DOI:10.1007/978-3-0348-0631-2_6