Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring

The estimation of the tail index and extreme quantiles of a heavy-tailed distribution is addressed when some covariate information is available and the data are randomly right-censored. Several estimators are constructed by combining a moving-window technique (for tackling the covariate information)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2014-11, Vol.79, p.63-79
Hauptverfasser: Ndao, Pathé, Diop, Aliou, Dupuy, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estimation of the tail index and extreme quantiles of a heavy-tailed distribution is addressed when some covariate information is available and the data are randomly right-censored. Several estimators are constructed by combining a moving-window technique (for tackling the covariate information) and the inverse probability-of-censoring weighting method. The asymptotic normality of these estimators is established and their finite-sample properties are investigated via simulations. A comparison with alternative estimators is provided. Finally, the proposed methodology is illustrated on a medical dataset.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2014.05.007