Oxidation of methyl and ethyl butanoates

This paper describes an experimental and modeling study of the oxidation of methyl and ethyl butanoates in a shock tube. The ignition delays of these two esters mixed with oxygen and argon for equivalence ratios from 0.25 to 2 and ester concentrations of 0.5% and 1% were measured behind a reflected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical kinetics 2010-04, Vol.42 (4), p.226-252
Hauptverfasser: Hakka, M. H., Bennadji, H., Biet, J., Yahyaoui, M., Sirjean, B., Warth, V., Coniglio, L., Herbinet, O., Glaude, P. A., Billaud, F., Battin-Leclerc, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an experimental and modeling study of the oxidation of methyl and ethyl butanoates in a shock tube. The ignition delays of these two esters mixed with oxygen and argon for equivalence ratios from 0.25 to 2 and ester concentrations of 0.5% and 1% were measured behind a reflected shock wave for temperatures from 1250 to 2000 K and pressures around 8 atm. To extend the range of studied temperatures in the case of methyl butanoate, two sets of measurements were also made in a jet‐stirred reactor at 800 and 850 K, at atmospheric pressure, at residence times varying between 1.5 and 9 s and for equivalence ratios of 0.5 and 1. Detailed mechanisms for the combustion of methyl and ethyl butanoates have been automatically generated using a version of EXGAS software improved to take into account these oxygenated reactants. These mechanisms have been validated through comparison of simulated and experimental results in both types of reactor. The main reaction pathways have been derived from reaction flux and sensitivity analyses performed at different temperatures. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 226–252, 2010
ISSN:0538-8066
1097-4601
DOI:10.1002/kin.20473