Quantum Grothendieck rings and derived Hall algebras
Let g = n ⊕ h ⊕ n be a simple Lie algebra over C of type , , , and let g) be the associated quantum loop algebra. Following Nakajima [Ann. of Math. (2) 160 (2004), 1057–1097], Varagnolo–Vasserot [Studies in memory of Issai Schur, Birkhäuser-Verlag, Basel (2002), 345–365], and the first author [Adv....
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-04, Vol.2015 (701), p.77-126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let g = n ⊕ h ⊕ n
be a simple Lie algebra over C of type
,
,
, and let
g) be the associated quantum loop algebra.
Following Nakajima [Ann. of Math. (2) 160 (2004), 1057–1097], Varagnolo–Vasserot [Studies in memory of Issai Schur, Birkhäuser-Verlag, Basel (2002), 345–365], and the
first author [Adv. Math. 187 (2004), 1–52],
we study a
-deformation K
of the Grothendieck ring of
a tensor category C
of finite-dimensional
g)-modules.
We obtain a presentation of K
by generators and relations.
Let
be a Dynkin quiver of the same type as g.
Let DH(
) be the derived Hall algebra of the bounded derived category
(mod(
)) over a finite field
,
introduced by Toën [Duke Math. J. 135 (2006), 587–615]. Our presentation shows that
the specialization of K
at
= |
is isomorphic to
DH(
). Under this isomorphism, the classes of fundamental
g)-modules
are mapped to scalar multiples of the classes of indecomposable objects in DH(
).
Our presentation of K
is deduced from the preliminary study of a tensor subcategory C
of C
analogous to the heart mod(
) of the
triangulated category
(mod(
)). We show that the
-deformed
Grothendieck ring K
of C
is isomorphic to the positive
part of the quantum enveloping algebra of g, and that the basis
of classes of simple objects of K
corresponds to the dual of
Lusztig's canonical basis. The proof relies on the algebraic characterizations
of these bases, but we also give a geometric approach in the last section.
It follows that for every orientation
of the Dynkin diagram,
the category C
gives a new categorification of the
coordinate ring C[
] of a unipotent group
with Lie algebra n,
together with its dual canonical basis. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2013-0020 |