On the isotropic constant of random polytopes
Let K be an isotropic 1-unconditional convex body in ℝ n . For every N > n consider N independent random points x 1, . . . , x N uniformly distributed in K. We prove that, with probability greater than 1 – C 1 exp(–cn) if N ≥ c 1 n and greater than 1 – C 1 exp(–cn/ log n) if n < N < c 1 n,...
Gespeichert in:
Veröffentlicht in: | Advances in geometry 2010-04, Vol.10 (2), p.311-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be an isotropic 1-unconditional convex body in ℝ n . For every N > n consider N independent random points x 1, . . . , x N uniformly distributed in K. We prove that, with probability greater than 1 – C 1 exp(–cn) if N ≥ c 1 n and greater than 1 – C 1 exp(–cn/ log n) if n < N < c 1 n, the random polytopes KN ≔ conv{±x 1, . . . , ±x N } and SN ≔ conv{x 1, . . . , x N } have isotropic constant bounded by an absolute constant C > 0. |
---|---|
ISSN: | 1615-715X 1615-7168 |
DOI: | 10.1515/advgeom.2010.009 |