Singular semipositive metrics in non-Archimedean geometry
Let X X be a smooth projective Berkovich space over a complete discrete valuation field K K of residue characteristic zero, endowed with an ample line bundle L L . We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metrics on L L and prove the analogue of the fol...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2016-01, Vol.25 (1), p.77-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
X
be a smooth projective Berkovich space over a complete discrete valuation field
K
K
of residue characteristic zero, endowed with an ample line bundle
L
L
. We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metrics on
L
L
and prove the analogue of the following two basic results in the complex case: the set of semipositive metrics is compact modulo scaling, and each semipositive metric is a decreasing limit of smooth semipositive ones. In particular, for continuous metrics, our definition agrees with the one by S.-W. Zhang. The proofs use multiplier ideals and the construction of suitable models of
X
X
over the valuation ring of
K
K
, using toroidal techniques. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/656 |