Singular semipositive metrics in non-Archimedean geometry

Let X X be a smooth projective Berkovich space over a complete discrete valuation field K K of residue characteristic zero, endowed with an ample line bundle L L . We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metrics on L L and prove the analogue of the fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2016-01, Vol.25 (1), p.77-139
Hauptverfasser: Boucksom, Sébastien, Favre, Charles, Jonsson, Mattias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X X be a smooth projective Berkovich space over a complete discrete valuation field K K of residue characteristic zero, endowed with an ample line bundle L L . We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metrics on L L and prove the analogue of the following two basic results in the complex case: the set of semipositive metrics is compact modulo scaling, and each semipositive metric is a decreasing limit of smooth semipositive ones. In particular, for continuous metrics, our definition agrees with the one by S.-W. Zhang. The proofs use multiplier ideals and the construction of suitable models of X X over the valuation ring of K K , using toroidal techniques.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/656