A shortest path-based approach to the multileaf collimator sequencing problem
The multileaf collimator sequencing problem is an important component in effective cancer treatment delivery. The problem can be formulated as finding a decomposition of an integer matrix into a weighted sequence of binary matrices whose rows satisfy a consecutive ones property. Minimising the cardi...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2012, Vol.160 (1), p.81-99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multileaf collimator sequencing problem is an important component in effective cancer treatment delivery. The problem can be formulated as finding a decomposition of an integer matrix into a weighted sequence of binary matrices whose rows satisfy a consecutive ones property. Minimising the cardinality of the decomposition is an important objective and has been shown to be strongly NP-hard, even for a matrix restricted to a single column or row. We show that in this latter case it can be solved efficiently as a shortest path problem, giving a simple proof that the one-row problem is fixed-parameter tractable in the maximum intensity. We develop new linear and constraint programming models exploiting this result. Our approaches significantly improve the best known for the problem, bringing real-world sized problem instances within reach of exact algorithms. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2011.09.008 |