Kernel regression estimation for continuous spatial processes

We investigate here a kernel estimate of the spatial regression function r(x) = E(Y ^sub u^ | X ^sub u^ = x), x ^sup d^ , of a stationary multidimensional spatial process { Z ^sub u^ = (X ^sub u^ , Y ^sub u^ ), u ^sup N^ }. The weak and strong consistency of the estimate is shown under sufficient co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of statistics 2007-12, Vol.16 (4), p.298-317
Hauptverfasser: Dabo-Niang, S., Yao, A. -F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate here a kernel estimate of the spatial regression function r(x) = E(Y ^sub u^ | X ^sub u^ = x), x ^sup d^ , of a stationary multidimensional spatial process { Z ^sub u^ = (X ^sub u^ , Y ^sub u^ ), u ^sup N^ }. The weak and strong consistency of the estimate is shown under sufficient conditions on the mixing coefficients and the bandwidth, when the process is observed over a rectangular domain of ^sup N^ . Special attention is paid to achieve optimal and suroptimal strong rates of convergence. It is also shown that this suroptimal rate is preserved by using a suitable spatial sampling scheme.[PUBLICATION ABSTRACT]
ISSN:1066-5307
1934-8045
DOI:10.3103/S1066530707040023