A uniform asymptotic expansion for weighted sums of exponentials

We consider the random variable Z n , α = Y 1 + 2 α Y 2 + ⋯ + n α Y n , with α ∈ R and Y 1 , Y 2 , … independent and exponentially distributed random variables with mean one. The distribution function of Z n , α is in terms of a series with alternating signs, causing great numerical difficulties. Us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics & probability letters 2011-11, Vol.81 (11), p.1571-1579
Hauptverfasser: van Leeuwaarden, J.S.H., Temme, N.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the random variable Z n , α = Y 1 + 2 α Y 2 + ⋯ + n α Y n , with α ∈ R and Y 1 , Y 2 , … independent and exponentially distributed random variables with mean one. The distribution function of Z n , α is in terms of a series with alternating signs, causing great numerical difficulties. Using an extended version of the saddle point method, we derive a uniform asymptotic expansion for P ( Z n , α < x ) that remains valid inside ( α ≥ − 1 / 2 ) and outside ( α < − 1 / 2 ) the domain of attraction of the central limit theorem. We discuss several special cases, including α = 1 , for which we sharpen some of the results in Kingman and Volkov (2003).
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2011.05.013