A uniform asymptotic expansion for weighted sums of exponentials
We consider the random variable Z n , α = Y 1 + 2 α Y 2 + ⋯ + n α Y n , with α ∈ R and Y 1 , Y 2 , … independent and exponentially distributed random variables with mean one. The distribution function of Z n , α is in terms of a series with alternating signs, causing great numerical difficulties. Us...
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2011-11, Vol.81 (11), p.1571-1579 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the random variable
Z
n
,
α
=
Y
1
+
2
α
Y
2
+
⋯
+
n
α
Y
n
, with
α
∈
R
and
Y
1
,
Y
2
,
…
independent and exponentially distributed random variables with mean one. The distribution function of
Z
n
,
α
is in terms of a series with alternating signs, causing great numerical difficulties. Using an extended version of the saddle point method, we derive a uniform asymptotic expansion for
P
(
Z
n
,
α
<
x
)
that remains valid inside (
α
≥
−
1
/
2
) and outside (
α
<
−
1
/
2
) the domain of attraction of the central limit theorem. We discuss several special cases, including
α
=
1
, for which we sharpen some of the results in
Kingman and Volkov (2003). |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2011.05.013 |