Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix

Canonical polyadic decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be columnwise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2012-01, Vol.33 (4), p.1190-1213
Hauptverfasser: Sørensen, Mikael, Lathauwer, Lieven De, Comon, Pierre, Icart, Sylvie, Deneire, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canonical polyadic decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be columnwise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of the optimal low-rank approximation of a tensor in the case that a factor matrix is columnwise orthonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix diagonalization and alternating least squares are presented. Numerical experiments are reported. [PUBLICATION ABSTRACT]
ISSN:0895-4798
1095-7162
DOI:10.1137/110830034