A variational analysis of the thermal equilibrium state of charged quantum fluids

The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Ω is entirely described by the particle density n minimizing the total energy where π = V[n] + V e solves Poisson's equation -δπ = n-C subject to mixed Dirichlet-Neumann boundary conditions. It is shown tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 1995-01, Vol.20 (5-6), p.885-900
Hauptverfasser: Pacard, Frank, Unterreiter, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Ω is entirely described by the particle density n minimizing the total energy where π = V[n] + V e solves Poisson's equation -δπ = n-C subject to mixed Dirichlet-Neumann boundary conditions. It is shown that for given N > 0 (i.e. for prescribed total number of particles) this energy functional admits a unique minimizer in Furthermore it is proven that for all λ ∈ (0,1) and n>0 in Ω.
ISSN:0360-5302
1532-4133
DOI:10.1080/03605309508821118