A variational analysis of the thermal equilibrium state of charged quantum fluids
The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Ω is entirely described by the particle density n minimizing the total energy where π = V[n] + V e solves Poisson's equation -δπ = n-C subject to mixed Dirichlet-Neumann boundary conditions. It is shown tha...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 1995-01, Vol.20 (5-6), p.885-900 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Ω is entirely described by the particle density n minimizing the total energy
where π = V[n] + V
e
solves Poisson's equation -δπ = n-C subject to mixed Dirichlet-Neumann boundary conditions. It is shown that for given N > 0 (i.e. for prescribed total number of particles) this energy functional admits a unique minimizer in
Furthermore it is proven that
for all λ ∈ (0,1) and n>0 in Ω. |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605309508821118 |