Characterization of cationic copolymers by capillary electrophoresis using indirect UV detection and contactless conductivity detection

For many industrial applications, the combination of two different monomers in statistical or diblock copolymers enhances the properties of the corresponding polymer. However, during the polymerization reaction, homopolymers might be formed and can influence the properties for the applications. Cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2012, Vol.1219, p.188-194
Hauptverfasser: Anik, Nadia, Airiau, Marc, Labeau, Marie-Pierre, Vuong, Chi-Thanh, Cottet, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For many industrial applications, the combination of two different monomers in statistical or diblock copolymers enhances the properties of the corresponding polymer. However, during the polymerization reaction, homopolymers might be formed and can influence the properties for the applications. Consequently, the separation and the quantification of the homopolymers contained in copolymer samples are crucial. In addition, the charge density distribution of the statistical copolymer is an important characteristic for the applications. The purpose of this work was to study the characterization of a statistical copolymer of acrylic acid (AA) and diallyldimethyl ammonium chloride (DADMAC) by capillary electrophoresis (CE) in acidic conditions (cationic copolymers). For that purpose, a free solution electrophoretic separation was carried out according to the charge rate (chemical composition) independently of the molar mass. The second objective was to compare contactless conductivity detection and indirect UV absorbance modes for the quantification of DADMAC homopolymers present in copolymer samples. Different coated capillaries based on neutral or positively charged modification were also compared. The comparison of indirect absorbance UV and contactless conductimetric detection demonstrated that both detection modes can be used for a complete CE characterization of non-UV absorbing PAA-DADMAC copolymers.
ISSN:0021-9673
1873-3778
DOI:10.1016/j.chroma.2011.11..014