Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels Under Limited Feedback

In this paper, we study the sum rate performance of zero-forcing (ZF) and regularized ZF (RZF) precoding in large MISO broadcast systems under the assumptions of imperfect channel state information at the transmitter and per-user channel transmit correlation. Our analysis assumes that the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-07, Vol.58 (7), p.4509-4537
Hauptverfasser: Wagner, Sebastian, Couillet, Romain, Debbah, Mérouane, Slock, Dirk T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the sum rate performance of zero-forcing (ZF) and regularized ZF (RZF) precoding in large MISO broadcast systems under the assumptions of imperfect channel state information at the transmitter and per-user channel transmit correlation. Our analysis assumes that the number of transmit antennas M and the number of single-antenna users K are large while their ratio remains bounded. We derive deterministic approximations of the empirical signal-to-interference plus noise ratio (SINR) at the receivers, which are tight as M, K → ∞. In the course of this derivation, the per-user channel correlation model requires the development of a novel deterministic equivalent of the empirical Stieltjes transform of large dimensional random matrices with generalized variance profile. The deterministic SINR approximations enable us to solve various practical optimization problems. Under sum rate maximization, we derive 1) for RZF the optimal regularization parameter; 2) for ZF the optimal number of users; 3) for ZF and RZF the optimal power allocation scheme; and 4) the optimal amount of feedback in large FDD/TDD multiuser systems. Numerical simulations suggest that the deterministic approximations are accurate even for small M, K.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2191700