Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - comparisons with observations
A global simulation of the ocean response to atmospheric wind and pressure forcing has been run during the Topex/Poseidon (T/P) period (1992–2002), using a new hydrodynamic finite element (FE) model, MOG2D‐G. Model outputs are compared to in situ observations with tide gauge data (TG) and bottom pre...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2003-03, Vol.30 (6), p.8.1-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A global simulation of the ocean response to atmospheric wind and pressure forcing has been run during the Topex/Poseidon (T/P) period (1992–2002), using a new hydrodynamic finite element (FE) model, MOG2D‐G. Model outputs are compared to in situ observations with tide gauge data (TG) and bottom pressure gauge data (BPR), and also with T/P altimetric cross over points (noted CO). Intercomparisons were performed over the 1993–1999 period. The model correction reduces the sea level variance by more than 50% at TG locations, and by more than 15% at T/P CO, when compared to the classical inverse barometer correction (IB). The model impact differs between high and low latitudes: in the very energetic high latitudes areas, MOG2D‐G is efficient in reducing the variance, while at low latitudes, the results are similar to the IB static response. In shallow water, the model shows an oceanic response very different from the IB response. In conclusion, MOG2D‐G models the high frequency (HF) atmospheric forced variability of the global ocean with unprecedented accuracy. |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2002GL016473 |