Pesticide Risk Mitigation by Vegetated Treatment Systems: A Meta‐Analysis

Pesticides entering agricultural surface waters threaten water quality and aquatic communities. Recently, vegetated treatment systems (VTSs) (e.g., constructed wetlands and vegetated ditches) have been proposed as pesticide risk mitigation measures. However, little is known about the effectiveness o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2011-07, Vol.40 (4), p.1068-1080
Hauptverfasser: Stehle, Sebastian, Elsaesser, David, Gregoire, Caroline, Imfeld, Gwenaël, Niehaus, Engelbert, Passeport, Elodie, Payraudeau, Sylvain, Schäfer, Ralf B., Tournebize, Julien, Schulz, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pesticides entering agricultural surface waters threaten water quality and aquatic communities. Recently, vegetated treatment systems (VTSs) (e.g., constructed wetlands and vegetated ditches) have been proposed as pesticide risk mitigation measures. However, little is known about the effectiveness of VTSs in controlling nonpoint source pesticide pollution and factors relevant for pesticide retention within these systems. Here, we conducted a meta‐analysis on pesticide mitigation by VTSs using data from the scientific literature and the European LIFE ArtWET project. Overall, VTSs effectively reduced pesticide exposure levels (i.e., the majority of pesticide retention performances was >70%). A multiple linear regression analysis of 188 retention performance cases identified the two pesticide properties, organic carbon sorption coefficient value and water‐phase 50% dissipation time, as well as the VTS characteristics overall plant coverage and hydraulic retention time for targeting high efficacy of pesticide retention. The application of a Tier I risk assessment (EU Uniform Principle) revealed a higher toxicity reduction for hydrophobic and nonpersistent insecticides compared with less sorptive and not readily degradable herbicides and fungicides. Overall, nearly half (48.5%) of all pesticide field concentrations (n = 130) failed Tier I standard risk assessment at the inlet of VTSs, and 29.2% of all outlet concentrations exceeded conservative acute threshold levels. We conclude that VTSs are a suitable and effective risk mitigation strategy for agricultural nonpoint source pesticide pollution of surface waters. Further research is needed to improve their overall efficacy in retaining pesticides.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2010.0510