Displacement interpolation using Lagrangian mass transport

Interpolation between pairs of values, typically vectors, is a fundamental operation in many computer graphics applications. In some cases simple linear interpolation yields meaningful results without requiring domain knowledge. However, interpolation between pairs of distributions or pairs of funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2011-12, Vol.30 (6), p.1-12
Hauptverfasser: Bonneel, Nicolas, van de Panne, Michiel, Paris, Sylvain, Heidrich, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interpolation between pairs of values, typically vectors, is a fundamental operation in many computer graphics applications. In some cases simple linear interpolation yields meaningful results without requiring domain knowledge. However, interpolation between pairs of distributions or pairs of functions often demands more care because features may exhibit translational motion between exemplars. This property is not captured by linear interpolation. This paper develops the use of displacement interpolation for this class of problem, which provides a generic method for interpolating between distributions or functions based on advection instead of blending. The functions can be non-uniformly sampled, high-dimensional, and defined on non-Euclidean manifolds, e.g., spheres and tori. Our method decomposes distributions or functions into sums of radial basis functions (RBFs). We solve a mass transport problem to pair the RBFs and apply partial transport to obtain the interpolated function. We describe practical methods for computing the RBF decomposition and solving the transport problem. We demonstrate the interpolation approach on synthetic examples, BRDFs, color distributions, environment maps, stipple patterns, and value functions.
ISSN:0730-0301
1557-7368
DOI:10.1145/2070781.2024192