Rheology of granular materials composed of nonconvex particles
By means of contact dynamics simulations, we investigate the shear strength and internal structure of granular materials composed of two-dimensional nonconvex aggregates. We find that the packing fraction first grows as the nonconvexity is increased but declines at higher nonconvexity. This unmonoto...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-10, Vol.84 (4 Pt 1), p.041302-041302, Article 041302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By means of contact dynamics simulations, we investigate the shear strength and internal structure of granular materials composed of two-dimensional nonconvex aggregates. We find that the packing fraction first grows as the nonconvexity is increased but declines at higher nonconvexity. This unmonotonic dependence reflects the competing effects of pore size reduction between convex borders of aggregates and gain in porosity at the nonconvex borders that are captured in a simple model fitting nicely the simulation data both in the isotropic and sheared packings. On the other hand, the internal angle of friction increases linearly with nonconvexity and saturates to a value independent of nonconvexity. We show that fabric anisotropy, force anisotropy, and friction mobilization, all enhanced by multiple contacts between aggregates, govern the observed increase of shear strength and its saturation with increasing nonconvexity. The main effect of interlocking is to dislocate frictional dissipation from the locked double and triple contacts between aggregates to the simple contacts between clusters of aggregates. This self-organization of particle motions allows the packing to keep a constant shear strength at high nonconvexity. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.84.041302 |