Computability of the ergodic decomposition
The study of ergodic theorems from the viewpoint of computable analysis is a rich field of investigation. Interactions between algorithmic randomness, computability theory and ergodic theory have recently been examined by several authors. It has been observed that ergodic measures have better comput...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 2013-05, Vol.164 (5), p.542-549 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of ergodic theorems from the viewpoint of computable analysis is a rich field of investigation. Interactions between algorithmic randomness, computability theory and ergodic theory have recently been examined by several authors. It has been observed that ergodic measures have better computability properties than non-ergodic ones. In a previous paper we studied the extent to which non-ergodic measures inherit the computability properties of ergodic ones, and introduced the notion of an effectively decomposable measure. We asked the following question: if the ergodic decomposition of a stationary measure is finite, is this decomposition effective? In this paper we answer the question in the negative. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/j.apal.2012.11.005 |