Spectrum of hypersurfaces with small extrinsic radius or large $\lambda_1$ in euclidean spaces
In this paper, we prove that Euclidean hypersurfaces with almost extremal extrinsic radius or $\lambda_1$ have a spectrum that asymptotically contains the spectrum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We also consider almost extremal hypersurfaces which satisfy...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2016, Vol.271 (5), p.1213-1242. |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that Euclidean hypersurfaces with almost extremal extrinsic radius or $\lambda_1$ have a spectrum that asymptotically contains the spectrum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We also consider almost extremal hypersurfaces which satisfy a supplementary bound on $v_M\|\B\|_\alpha^n$ and show that their spectral and topological properties depends on the position of $\alpha$ with respect to the critical value $\dim M$. The study of the metric shape of these extremal hypersurfaces will be done in \cite{AG1}, using estimates of the present paper. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2016.06.011 |