Spectrum of hypersurfaces with small extrinsic radius or large $\lambda_1$ in euclidean spaces

In this paper, we prove that Euclidean hypersurfaces with almost extremal extrinsic radius or $\lambda_1$ have a spectrum that asymptotically contains the spectrum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We also consider almost extremal hypersurfaces which satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2016, Vol.271 (5), p.1213-1242.
Hauptverfasser: Aubry, Erwann, Grosjean, Jean-Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that Euclidean hypersurfaces with almost extremal extrinsic radius or $\lambda_1$ have a spectrum that asymptotically contains the spectrum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We also consider almost extremal hypersurfaces which satisfy a supplementary bound on $v_M\|\B\|_\alpha^n$ and show that their spectral and topological properties depends on the position of $\alpha$ with respect to the critical value $\dim M$. The study of the metric shape of these extremal hypersurfaces will be done in \cite{AG1}, using estimates of the present paper.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2016.06.011