Consistent Wiener Filtering for Audio Source Separation

Wiener filtering is one of the most ubiquitous tools in signal processing, in particular for signal denoising and source separation. In the context of audio, it is typically applied in the time-frequency domain by means of the short-time Fourier transform (STFT). Such processing does generally not t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2013-03, Vol.20 (3), p.217-220
Hauptverfasser: Le Roux, J., Vincent, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wiener filtering is one of the most ubiquitous tools in signal processing, in particular for signal denoising and source separation. In the context of audio, it is typically applied in the time-frequency domain by means of the short-time Fourier transform (STFT). Such processing does generally not take into account the relationship between STFT coefficients in different time-frequency bins due to the redundancy of the STFT, which we refer to as consistency. We propose to enforce this relationship in the design of the Wiener filter, either as a hard constraint or as a soft penalty. We derive two conjugate gradient algorithms for the computation of the filter coefficients and show improved audio source separation performance compared to the classical Wiener filter both in oracle and in blind conditions.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2012.2225617